Initial adhesion of Listeria monocytogenes to solid surfaces under liquid flow.
نویسندگان
چکیده
Some strains of the food borne pathogen Listeria monocytogenes persist in food processing environments. The exact reason behind this phenomenon is not known, but strain differences in the ability to adhere to solid surfaces could offer an explanation. In the present work, initial adhesion of nine strains of L. monocytogenes was investigated under liquid flow at two levels of shear stress on six different surfaces using a flow chamber set-up with microscopy measurements. The surfaces tested were glass and PVC, and glass coated with beef extract, casein, and homogenised and unhomogenised milk. In addition, the effect of prior environmental stress (5% NaCl, low nutrient availability) on initial adhesion was investigated. The hydrophobicity of the investigated surfaces was determined by contact angle measurements and the surface properties of the investigated L. monocytogenes strains were determined using Microbial Adhesion To Solvents (MATS). All surfaces with the exception of PVC were found to be hydrophilic. Strain differences were found to significantly influence the initial adhesion rate (IAR) of all nine strains to all the surfaces (p<0.05) at both low and high shear stress. Furthermore, there was a significant effect of the surfaces tested (p<0.05) in the adhesion ability of almost all strains. The IAR was affected by flow rate (shear stress) as seen by a decrease in adhesion at high shear stress for most strains. A significant effect of interactions between strain-surface and strain-shear stress (p<0.001) was observed but not of interactions between surface-shear stress. No correlation between surface hydrophobicity and IAR was observed. Addition of 5% NaCl during propagation resulted in a decrease in IAR whilst propagation in low nutrient media caused an increase indicating a general change in surface characteristics under these conditions. Known persisting strains did not display general better adherence.
منابع مشابه
Construction and analysis of fractional multifactorial designs to study attachment strength and transfer of Listeria monocytogenes from pure or mixed biofilms after contact with a solid model food.
The aim of this study was to establish which of seven factors influence the adhesion strength and hence bacterial transfer between biofilms containing Listeria monocytogenes (pure and two-species biofilms) and tryptone soya agar (TSA) as a solid organic surface. The two-species biofilms were made of L. monocytogenes and one of the following species of bacteria: the nonpathogenic organisms Kocur...
متن کاملIncreased Adhesion of Listeria monocytogenes Strains to Abiotic Surfaces under Cold Stress
Food contamination by Listeria monocytogenes remains a major concern for some food processing chains, particularly for ready-to-eat foods, including processed foods. Bacterial adhesion on both biotic and abiotic surfaces is a source of contamination by pathogens that have become more tolerant or even persistent in food processing environments, including in the presence of adverse conditions suc...
متن کاملCharacterization of physicochemical forces involved in adhesion of Listeria monocytogenes to surfaces.
This study investigated the physicochemical forces involving the adhesion of Listeria monocytogenes to surfaces. A total of 22 strains of L. monocytogenes were compared for relative surface hydrophobicity with the salt aggregation test. Cell surface charges and hydrophobicity of L. monocytogenes Scott A were also determined by electrophoretic mobility, hydrophobic-interaction chromatography, an...
متن کاملAdhesion of Salmonella Enteritidis and Listeria monocytogenes on stainless steel welds.
Pathogenic microorganisms are able to adhere on equipment surfaces, being possible to contaminate food during processing. Salmonella spp. and Listeria monocytogenes are important pathogens that can be transmitted by food, causing severe foodborne diseases. Most surfaces of food processing industry are made of stainless steel joined by welds. However currently, there are few studies evaluating t...
متن کاملListeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of food microbiology
دوره 152 3 شماره
صفحات -
تاریخ انتشار 2012